2768 independent reflections

 $R_{\rm int} = 0.075$

2212 reflections with $I > 2\sigma(I)$

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

1-[3-(1H-Indol-2-yl)-2-furyl]ethanone

Manuel A. Fernandes,^a Charles B. de Koning,^a Christopher B. Perry^a and Stephen C. Pelly^b*

^aSchool of Chemistry, Molecular Sciences Institute, University of the Witwatersrand, PO Wits 2050, Johannesburg, South Africa, and ^bDiscovery Chemistry, Biosciences, CSIR, Private Bag X2, Modderfontein 1645, South Africa Correspondence e-mail: spelly@csir.co.za

Received 30 October 2007; accepted 9 November 2007

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.003 Å; R factor = 0.036; wR factor = 0.100; data-to-parameter ratio = 8.7.

En route to furostifoline, we synthesized the title compound, C₁₄H₁₁NO₂, as a yellow crystalline material, with two independent molecules in the asymmetric unit, related by a pseudo-centre of inversion; they have an approximately planar conformation, and similar bond lengths and angles. An intramolecular N-H···O hydrogen bond was observed for each molecule, as well as several intermolecular C-H···O interactions, linking the two molecules together into dimers. The dimers themselves are linked to neighbouring dimers by $C-H\cdots O$ and $C-H\cdots \pi$ interactions.

Related literature

For details of the preparation and use of the title compound, see Pelly et al. (2005).

For related literature, see: Bernstein et al. (1995); Etter et al. (1990); Furukawa & Ito (1990); Knölker & Reddy (2002); Omura et al. (1977); de Koning et al. (2000).

Experimental

Crystal data C14H11NO2 $M_r = 225.24$ Monoclinic, P2 a = 7.2780 (2) Å b = 14.3556 (3) Å c = 10.7002 (2) Å $\beta = 99.433 \ (1)^{\circ}$

V = 1102.84 (4) Å³ Z = 4Mo $K\alpha$ radiation $\mu = 0.09 \text{ mm}^{-1}$ T = 173 (2) K 0.35 \times 0.23 \times 0.14 mm

Data collection

Bruker APEXII CCD area-detector diffractometer Absorption correction: none 21468 measured reflections

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.036$	H atoms treated by a mixture of
$wR(F^2) = 0.100$	independent and constrained
S = 1.06	refinement
2768 reflections	$\Delta \rho_{\rm max} = 0.18 \text{ e } \text{\AA}^{-3}$
317 parameters	$\Delta \rho_{\rm min} = -0.18 \text{ e } \text{\AA}^{-3}$
1 restraint	

Table 1

Selected torsion angles (°).

N1A - C1A - C9A - C12A	5.8 (4)	C1A-C9A-C12A-C13A	0.9 (5)
C13B - C12B - C9B - C1B	-0.8(5)	O2A-C13A-C12A-C9A	-1.1(4)
N1B - C1B - C9B - C12B	-8.7(4)	C9B-C12B-C13B-O2B	5.0 (4)

Table 2

Hydrogen-bond geometry (Å, °).

Cg is the centroid of atoms C3B-C8B.

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1A - H1A \cdots O2A$ $N1B - H1B \cdots O2B$ $C4A - H4A \cdots Cg^{i}$ $C7A - H7A \cdots O2B$ $C7B - H7B \cdots O2A$ $C114 - H114 \cdots O2A^{ii}$	0.93 (3) 0.97 (3) 0.95 0.95 0.95 0.95	1.91 (3) 1.90 (3) 2.94 2.55 2.62 2.53	2.739 (3) 2.730 (3) 3.695 (2) 3.472 (3) 3.546 (3) 3.231 (3)	148 (2) 143 (3) 137 163 163 131 (1)
$C11B - H11B \cdots O2B^{iii}$	0.95	2.55	3.234 (3)	129 (1)

Symmetry codes: (i) -x + 1, $y - \frac{1}{2}$, -z + 1; (ii) x - 1, y, z; (iii) x + 1, y, z.

Data collection: APEX2 (Bruker, 2005a); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005b); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2003).

This work was supported by the National Research Foundation, Pretoria (NRF, GUN 2053652) and the University of the Witwatersrand. Additional funding was provided by the CSIR, Biosciences, Modderfontein, Johannesburg.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SI2046).

References

Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.

- Brandenburg, K. (1999). DIAMOND. Version 2.1c. Crystal Impact GbR, Bonn, Germany
- Bruker (2005a). APEX2. Version 2.0-1. Bruker AXS Inc., Madison, Wisconsin, USA.

Bruker (2005b). SAINT-NT. Version 6.0. (Includes XPREP and SADABS.) Bruker AXS Inc., Madison, Wisconsin, USA.

Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

- Farrugia, L. J. (1999). J. Appl. Cryst. **32**, 837–838. Furukawa, H. & Ito, C. (1990). Chem. Pharm. Bull. **38**, 1548–1550.
- Knölker, H.-J. & Reddy, K. R. (2002). Chem. Rev. 102, 4303-4427.
- Koning, C. B. de, Michael, J. P. & Rousseau, A. L. (2000). J. Chem. Soc. Perkin Trans. 1, pp. 1705-1713.
- Omura, S., Iwai, Y., Hirano, A., Nakagawa, A., Awaya, J., Tsuchiya, H., Takahashi, Y. & Matsuma, R. (1977). J. Antibiot. **30**, 275–282.

Pelly, S. C., Parkinson, C. J., van Otterlo, W. A. L. & de Koning, C. B. (2005). J. Org. Chem. 70, 10474–10481.

- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

Acta Cryst. (2007). E63, 04695-04696 [doi:10.1107/S1600536807057431]

1-[3-(1H-Indol-2-yl)-2-furyl]ethanone

M. A. Fernandes, C. B. de Koning, C. B. Perry and S. C. Pelly

Comment

The carbazole structure is found in many naturally occurring compounds which possess interesting and potentially useful biological properties (Knölker & Reddy, 2002). For example, staurosporine, an indolo[3,2-*a*]carbazole isolated from *Streptomyces staurosporeus*, is a potent protein kinase C (PKC) inhibitor and therefore interest in compounds of this type exists due to their potential use as anti-cancer agents (Omura *et al.*, 1977). Our research group has been interested in the synthesis of carbazoles and in continuing this work (de Koning *et al.*, 2000), we sought to synthesize the naturally occurring furo[3,2-*a*]carbazole, furostifoline, first isolated by Furukawa and co-workers from *Murraya euchrestifolia* in 1990 (Furukawa & Ito, 1990).

En route to furostifoline, we synthesized the title compound in two steps starting from previously synthesized 1-(*tert*-butoxycarbonyl)-1*H*-indol-2-yl-2-boronic acid and 2-acetyl-3-bromofuran. (de Koning *et al.*, 2000).

The title compound crystallizes with two molecules (designated A and B) in the asymmetric unit related by a pseudo centre of inversion (Fig. 1). Both molecules have an approximate planar conformation and similar bond lengths and angles. Selected bond lengths and angles are given in Table 1. Molecules in the structure pack in a herring bone type arrangement. There is within each molecule an intramolecular N—H···O H bond (Table 2) which can be described by the graph set S(7) (Etter *et al.*, 1990; Bernstein *et al.*, 1995). Acting between molecule A and B are weak C—H···O contacts (Table 2) linking these two molecules together into a dimer. Each of these dimers interact through C—H···O and C—H··· π interactions with neighbouring dimers to form a stack of dimer molecules related by translation along the *a* axis (Fig. 2). The kink in the herring bone is generated by dimers related by the 2-fold screw axis along b. These interact with molecules in the original stack through C—H··· π interactions (Table 2).

Experimental

The title compound, 2-(2-Acetylfuran-3-yl)-1*H*-indole, was prepared in 85% yield by AlCl₃ facilitated deprotection of *tert*butyl 2-(2-acetylfuran-3-yl)-1*H*-indole-1-carboxylate as described previously (de Koning *et al.*, 2000). Crystals suitable for X-ray crystallography were obtained as yellow needles by recrystallization from n-hexane–ethyl acetate (*ca* 4:1).

Refinement

The structure is chiral but does not contain any atoms capable of significant anomalous dispersion under the experimental conditions used. As a consequence, a total of 2556 Friedel pairs were merged (92% of all possible pairs were collected) before the final refinement was performed. The indole N—H atoms were placed from the difference map and refined freely. All remaining H atoms were positioned geometrically, and allowed to ride on their parent atoms, with C—H bond lengths of 0.99 Å (CH₂), 0.98 Å (CH₃), or 0.95 Å (aromatic CH). Isotropic displacement parameters for these atoms were set equal to 1.2 (CH₂ and aromatic CH), or 1.5 (CH₃) times U_{eq} of the parent atom.

Figures

Fig. 1. The molecular structure of the title compound, showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. The intramolecular N—H…O hydrogen bonds are indicated as dashed lines.

Fig. 2. Packing diagram showing the intramolecular N—H…O hydrogen bonding, as well as the intermolecular C—H…O interactions in the crystal structure of the title compound. All hydrogen atoms not involved in these interactions have been omitted for clarity.

1-[3-(1*H*-Indol-2-yl)-2-furyl]ethanone

Crystal data	
C ₁₄ H ₁₁ NO ₂	$F_{000} = 472$
$M_r = 225.24$	$D_{\rm x} = 1.357 {\rm ~Mg~m}^{-3}$
Monoclinic, P2 ₁	Mo <i>K</i> α radiation $\lambda = 0.71073$ Å
Hall symbol: P 2yb	Cell parameters from 6968 reflections
a = 7.2780 (2) Å	$\theta = 2.4 - 27.1^{\circ}$
b = 14.3556 (3) Å	$\mu = 0.09 \text{ mm}^{-1}$
c = 10.7002 (2) Å	T = 173 (2) K
$\beta = 99.4330 \ (10)^{\circ}$	Block, yellow
$V = 1102.84 (4) \text{ Å}^3$	$0.35 \times 0.23 \times 0.14 \text{ mm}$
Z = 4	

Data collection

CCD area-detector diffractometer	2212 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.075$
Monochromator: graphite	$\theta_{\text{max}} = 28.0^{\circ}$
T = 173(2) K	$\theta_{\min} = 1.9^{\circ}$
φ and ω scans	$h = -9 \rightarrow 9$
Absorption correction: none	$k = -18 \rightarrow 18$
21468 measured reflections	$l = -14 \rightarrow 14$
2768 independent reflections	

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H atoms treated by a mixture of independent and constrained refinement
$R[F^2 > 2\sigma(F^2)] = 0.036$	$w = 1/[\sigma^2(F_o^2) + (0.0635P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.100$	$(\Delta/\sigma)_{max} < 0.001$
<i>S</i> = 1.06	$\Delta \rho_{max} = 0.18 \text{ e} \text{ Å}^{-3}$
2768 reflections	$\Delta \rho_{\rm min} = -0.18 \text{ e } \text{\AA}^{-3}$
317 parameters	Extinction correction: none
1 restraint	
Primary atom site location: structure-invariant direct methods	
Secondary atom site location: difference Fourier man	

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
C1A	0.1578 (3)	0.21152 (16)	0.4829 (2)	0.0323 (5)
C2A	0.1439 (3)	0.18270 (16)	0.6032 (2)	0.0364 (6)
H2A	0.0375	0.1554	0.6293	0.044*
C3A	0.3167 (4)	0.20099 (16)	0.6816 (2)	0.0349 (5)
C4A	0.3883 (4)	0.18930 (17)	0.8110 (2)	0.0417 (6)
H4A	0.3139	0.1618	0.8662	0.050*
C5A	0.5660 (4)	0.2179 (2)	0.8565 (2)	0.0453 (6)
H5A	0.6148	0.2096	0.9437	0.054*
C6A	0.6766 (4)	0.2590 (2)	0.7770 (3)	0.0458 (7)
H6A	0.7991	0.2786	0.8115	0.055*
C7A	0.6131 (4)	0.27201 (18)	0.6500(2)	0.0382 (6)
H7A	0.6893	0.3000	0.5963	0.046*
C8A	0.4337 (3)	0.24268 (15)	0.6035 (2)	0.0318 (5)
C9A	0.0165 (3)	0.21028 (16)	0.3723 (2)	0.0336 (5)
C10A	-0.1737 (3)	0.18362 (17)	0.3743 (3)	0.0434 (6)

H10A	-0.2244	0.1636	0.4461	0.052*
C11A	-0.2652 (3)	0.1923 (2)	0.2564 (3)	0.0493 (7)
H11A	-0.3940	0.1793	0.2319	0.059*
C12B	1.1820 (3)	0.46577 (16)	0.4771 (2)	0.0320 (5)
C13A	0.1643 (3)	0.26771 (16)	0.1773 (2)	0.0344 (5)
C14A	0.1071 (4)	0.28415 (19)	0.0385 (2)	0.0421 (6)
H14A	0.2151	0.3048	0.0020	0.063*
H14B	0.0102	0.3322	0.0251	0.063*
H14C	0.0584	0.2262	-0.0026	0.063*
N1A	0.3340 (3)	0.24717 (13)	0.48294 (19)	0.0319 (4)
O1A	-0.1524 (2)	0.22201 (13)	0.17585 (18)	0.0422 (4)
O2A	0.3235 (2)	0.28245 (13)	0.23032 (16)	0.0401 (4)
H1A	0.376 (4)	0.2655 (19)	0.410 (3)	0.037 (7)*
C1B	1.0474 (3)	0.49080 (15)	0.2418 (2)	0.0308 (5)
C2B	1.0589 (3)	0.52566 (16)	0.1234 (2)	0.0360 (5)
H2B	1.1643	0.5549	0.0985	0.043*
C3B	0.8846 (4)	0.50997 (15)	0.0456 (2)	0.0333 (5)
C4B	0.8092 (4)	0.52995 (18)	-0.0817 (2)	0.0435 (6)
H4B	0.8826	0.5603	-0.1351	0.052*
C5B	0.6294 (4)	0.50511 (19)	-0.1272 (2)	0.0482 (7)
H5B	0.5783	0.5183	-0.2129	0.058*
C6B	0.5188 (4)	0.4603 (2)	-0.0492 (3)	0.0483 (7)
H6B	0.3941	0.4440	-0.0832	0.058*
C7B	0.5868 (4)	0.43953 (18)	0.0748 (2)	0.0397 (6)
H7B	0.5120	0.4087	0.1269	0.048*
C8B	0.7690 (3)	0.46518 (15)	0.1213 (2)	0.0310 (5)
C9B	1.1889 (3)	0.48966 (16)	0.3528 (2)	0.0317 (5)
C10B	1.3770 (3)	0.51843 (19)	0.3530 (3)	0.0421 (6)
H10B	1.4276	0.5403	0.2820	0.051*
C11B	1.4689 (3)	0.5088 (2)	0.4713 (3)	0.0450 (7)
H11B	1.5972	0.5225	0.4969	0.054*
C12A	0.0223 (3)	0.23417 (16)	0.2476 (2)	0.0345 (5)
C13B	1.0363 (3)	0.43421 (15)	0.5458 (2)	0.0324 (5)
C14B	1.0873 (4)	0.42508 (19)	0.6865 (2)	0.0433 (6)
H14D	0.9756	0.4104	0.7228	0.065*
H14E	1.1408	0.4839	0.7221	0.065*
H14F	1.1789	0.3750	0.7067	0.065*
N1B	0.8714 (3)	0.45416 (13)	0.24001 (18)	0.0305 (4)
O1B	1.3545 (2)	0.47702 (12)	0.54965 (16)	0.0396 (4)
O2B	0.8787 (2)	0.41725 (13)	0.49107 (16)	0.0399 (4)
H1B	0.833 (4)	0.423 (2)	0.312 (3)	0.054 (8)*

Atomic displacement parameters (\AA^2)

	U^{11}	U ²²	U^{33}	U^{12}	U^{13}	U^{23}
C1A	0.0270 (11)	0.0269 (10)	0.0440 (13)	-0.0004 (9)	0.0088 (10)	-0.0018 (9)
C2A	0.0355 (13)	0.0311 (12)	0.0462 (15)	-0.0014 (10)	0.0177 (11)	0.0015 (10)
C3A	0.0395 (13)	0.0292 (12)	0.0386 (13)	0.0034 (10)	0.0144 (11)	0.0002 (9)

C4A	0.0594 (18)	0.0339 (12)	0.0359 (14)	0.0057 (11)	0.0195 (13)	0.0049 (10)
C5A	0.0642 (18)	0.0436 (14)	0.0274 (12)	0.0019 (13)	0.0055 (12)	0.0017 (11)
C6A	0.0479 (16)	0.0471 (16)	0.0391 (14)	-0.0075 (13)	-0.0028 (12)	0.0022 (12)
C7A	0.0391 (13)	0.0410 (13)	0.0342 (13)	-0.0045 (11)	0.0048 (10)	0.0059 (10)
C8A	0.0342 (12)	0.0290 (11)	0.0320 (12)	0.0008 (9)	0.0048 (10)	0.0044 (9)
C9A	0.0277 (12)	0.0272 (11)	0.0466 (14)	0.0025 (9)	0.0077 (10)	-0.0033 (10)
C10A	0.0278 (13)	0.0407 (14)	0.0624 (18)	-0.0029 (11)	0.0090 (12)	-0.0043 (13)
C11A	0.0231 (13)	0.0499 (16)	0.073 (2)	-0.0001 (11)	0.0029 (13)	-0.0080 (14)
C12B	0.0258 (11)	0.0315 (12)	0.0375 (12)	0.0021 (9)	0.0013 (9)	-0.0024 (10)
C13A	0.0322 (13)	0.0313 (12)	0.0389 (13)	0.0058 (10)	0.0035 (10)	-0.0032 (10)
C14A	0.0422 (14)	0.0444 (14)	0.0374 (13)	0.0049 (11)	-0.0002 (11)	-0.0048 (11)
N1A	0.0276 (10)	0.0354 (10)	0.0328 (10)	-0.0041 (8)	0.0057 (8)	0.0034 (8)
O1A	0.0261 (8)	0.0460 (10)	0.0515 (11)	0.0015 (8)	-0.0030 (8)	-0.0069 (8)
O2A	0.0300 (9)	0.0545 (11)	0.0352 (9)	-0.0006 (8)	0.0038 (7)	0.0019 (8)
C1B	0.0292 (11)	0.0291 (11)	0.0353 (12)	0.0001 (9)	0.0085 (9)	-0.0049 (9)
C2B	0.0393 (13)	0.0323 (12)	0.0400 (13)	-0.0024 (10)	0.0167 (11)	-0.0017 (10)
C3B	0.0448 (14)	0.0267 (11)	0.0303 (12)	0.0037 (10)	0.0114 (10)	-0.0013 (9)
C4B	0.0666 (18)	0.0346 (13)	0.0307 (13)	0.0046 (12)	0.0122 (12)	0.0011 (11)
C5B	0.0673 (19)	0.0444 (15)	0.0307 (13)	0.0071 (13)	0.0012 (13)	0.0004 (11)
C6B	0.0520 (16)	0.0480 (15)	0.0399 (14)	0.0019 (13)	-0.0074 (12)	-0.0068 (12)
C7B	0.0395 (14)	0.0399 (14)	0.0374 (14)	-0.0027 (11)	-0.0006 (11)	-0.0028 (11)
C8B	0.0371 (13)	0.0273 (11)	0.0283 (11)	0.0038 (9)	0.0044 (9)	-0.0024 (9)
C9B	0.0279 (11)	0.0297 (11)	0.0390 (12)	0.0015 (9)	0.0097 (10)	-0.0045 (10)
C10B	0.0286 (12)	0.0471 (14)	0.0535 (16)	-0.0025 (11)	0.0149 (12)	-0.0076 (12)
C11B	0.0253 (13)	0.0530 (16)	0.0566 (17)	-0.0014 (11)	0.0066 (12)	-0.0114 (13)
C12A	0.0236 (11)	0.0323 (12)	0.0454 (14)	0.0026 (9)	-0.0006 (10)	-0.0074 (10)
C13B	0.0328 (12)	0.0328 (12)	0.0304 (12)	0.0044 (10)	0.0018 (10)	0.0002 (9)
C14B	0.0488 (15)	0.0455 (14)	0.0346 (13)	0.0014 (12)	0.0036 (11)	0.0004 (11)
N1B	0.0308 (10)	0.0321 (9)	0.0287 (9)	-0.0031 (8)	0.0050 (8)	-0.0001 (8)
O1B	0.0273 (8)	0.0460 (10)	0.0437 (10)	0.0031 (7)	0.0004 (7)	-0.0059 (8)
O2B	0.0299 (9)	0.0521 (10)	0.0376 (9)	-0.0022 (8)	0.0048 (7)	0.0070 (8)

Geometric parameters (Å, °)

C1A—C2A	1.371 (3)	C14A—H14C	0.9800
C1A—N1A	1.381 (3)	N1A—H1A	0.93 (3)
С1А—С9А	1.435 (3)	O1A—C12A	1.384 (3)
C2A—C3A	1.417 (3)	C1B—C2B	1.378 (3)
C2A—H2A	0.9500	C1B—N1B	1.382 (3)
C3A—C4A	1.407 (4)	C1B—C9B	1.439 (3)
C3A—C8A	1.420 (3)	C2B—C3B	1.416 (4)
C4A—C5A	1.368 (4)	C2B—H2B	0.9500
C4A—H4A	0.9500	C3B—C4B	1.413 (3)
C5A—C6A	1.395 (4)	C3B—C8B	1.414 (3)
С5А—Н5А	0.9500	C4B—C5B	1.367 (4)
С6А—С7А	1.374 (4)	C4B—H4B	0.9500
С6А—Н6А	0.9500	C5B—C6B	1.407 (4)
C7A—C8A	1.385 (3)	C5B—H5B	0.9500
С7А—Н7А	0.9500	С6В—С7В	1.370 (4)

C8A—N1A	1.374 (3)	C6B—H6B	0.9500
C9A—C12A	1.385 (3)	C7B—C8B	1.388 (3)
C9A—C10A	1.440 (3)	С7В—Н7В	0.9500
C10A—C11A	1.332 (4)	C8B—N1B	1.373 (3)
C10A—H10A	0.9500	C9B—C10B	1.430 (3)
C11A—O1A	1.353 (3)	C10B—C11B	1.339 (4)
C11A—H11A	0.9500	C10B—H10B	0.9500
C12B—O1B	1.373 (3)	C11B—O1B	1.354 (3)
C12B—C9B	1.382 (3)	C11B—H11B	0.9500
C12B—C13B	1.457 (3)	C13B—O2B	1.224 (3)
C13A—O2A	1.222 (3)	C13B—C14B	1.497 (3)
C13A—C12A	1.456 (4)	C14B—H14D	0.9800
C13A—C14A	1.494 (4)	C14B—H14E	0.9800
C14A—H14A	0.9800	C14B—H14F	0.9800
C14A—H14B	0.9800	N1B—H1B	0.97 (3)
C2A—C1A—N1A	108.8 (2)	C2B—C1B—N1B	108.7 (2)
C2A—C1A—C9A	128.1 (2)	C2B—C1B—C9B	128.3 (2)
N1A—C1A—C9A	123.0 (2)	N1B-C1B-C9B	122.94 (19)
C1A—C2A—C3A	107.7 (2)	C1B—C2B—C3B	107.4 (2)
C1A—C2A—H2A	126.1	C1B—C2B—H2B	126.3
СЗА—С2А—Н2А	126.1	C3B—C2B—H2B	126.3
C4A—C3A—C2A	135.2 (2)	C4B—C3B—C8B	118.1 (2)
C4A—C3A—C8A	118.0 (2)	C4B—C3B—C2B	134.7 (2)
C2A—C3A—C8A	106.8 (2)	C8B—C3B—C2B	107.2 (2)
C5A—C4A—C3A	119.3 (2)	C5B—C4B—C3B	119.3 (2)
C5A—C4A—H4A	120.3	C5B—C4B—H4B	120.4
СЗА—С4А—Н4А	120.3	C3B—C4B—H4B	120.4
C4A—C5A—C6A	121.1 (2)	C4B—C5B—C6B	121.0 (3)
C4A—C5A—H5A	119.4	C4B—C5B—H5B	119.5
С6А—С5А—Н5А	119.4	C6B—C5B—H5B	119.5
C7A—C6A—C5A	121.8 (3)	C7B—C6B—C5B	121.5 (3)
С7А—С6А—Н6А	119.1	С7В—С6В—Н6В	119.2
С5А—С6А—Н6А	119.1	C5B—C6B—H6B	119.2
C6A—C7A—C8A	117.3 (2)	C6B—C7B—C8B	117.5 (3)
С6А—С7А—Н7А	121.4	C6B—C7B—H7B	121.3
С8А—С7А—Н7А	121.4	C8B—C7B—H7B	121.3
N1A—C8A—C7A	130.2 (2)	N1B—C8B—C7B	130.0 (2)
N1A—C8A—C3A	107.3 (2)	N1B—C8B—C3B	107.4 (2)
C7A—C8A—C3A	122.5 (2)	C7B—C8B—C3B	122.6 (2)
C12A—C9A—C1A	131.3 (2)	C12B—C9B—C10B	104.9 (2)
C12A—C9A—C10A	105.2 (2)	C12B—C9B—C1B	131.5 (2)
C1A—C9A—C10A	123.5 (2)	C10B—C9B—C1B	123.6 (2)
C11A—C10A—C9A	107.0 (3)	C11B—C10B—C9B	107.5 (2)
C11A—C10A—H10A	126.5	C11B—C10B—H10B	126.3
C9A—C10A—H10A	126.5	C9B—C10B—H10B	126.3
C10A—C11A—O1A	111.8 (2)	C10B—C11B—O1B	111.0 (2)
C10A—C11A—H11A	124.1	C10B—C11B—H11B	124.5
O1A—C11A—H11A	124.1	O1B—C11B—H11B	124.5
O1B—C12B—C9B	109.9 (2)	O1A—C12A—C9A	109.4 (2)

O1B—C12B—C13B	115.1 (2)	O1A—C12A—C13A	114.9 (2)
C9B—C12B—C13B	134.9 (2)	C9A—C12A—C13A	135.7 (2)
O2A—C13A—C12A	121.1 (2)	O2B-C13B-C12B	121.5 (2)
O2A—C13A—C14A	121.5 (2)	O2B-C13B-C14B	121.5 (2)
C12A—C13A—C14A	117.4 (2)	C12B—C13B—C14B	117.0 (2)
C13A—C14A—H14A	109.5	C13B—C14B—H14D	109.5
C13A—C14A—H14B	109.5	C13B—C14B—H14E	109.5
H14A—C14A—H14B	109.5	H14D—C14B—H14E	109.5
C13A—C14A—H14C	109.5	C13B—C14B—H14F	109.5
H14A—C14A—H14C	109.5	H14D—C14B—H14F	109.5
H14B—C14A—H14C	109.5	H14E—C14B—H14F	109.5
C8A—N1A—C1A	109.3 (2)	C8B—N1B—C1B	109.31 (19)
C8A—N1A—H1A	127.6 (17)	C8B—N1B—H1B	127.0 (18)
C1A—N1A—H1A	122.9 (17)	C1B—N1B—H1B	123.6 (18)
C11A—O1A—C12A	106.5 (2)	C11B—O1B—C12B	106.7 (2)
N1A—C1A—C2A—C3A	0.2 (3)	C6B—C7B—C8B—C3B	-0.8 (4)
C9A—C1A—C2A—C3A	-177.6 (2)	C4B—C3B—C8B—N1B	-179.4 (2)
C1A—C2A—C3A—C4A	178.7 (3)	C2B—C3B—C8B—N1B	-0.3 (2)
C1A—C2A—C3A—C8A	0.5 (3)	C4B—C3B—C8B—C7B	0.8 (3)
C2A—C3A—C4A—C5A	-178.2 (3)	C2B—C3B—C8B—C7B	179.9 (2)
C8A—C3A—C4A—C5A	-0.2 (3)	O1B—C12B—C9B—C10B	-1.1(3)
C3A—C4A—C5A—C6A	0.5 (4)	C13B—C12B—C9B—C10B	177.5 (3)
C4A—C5A—C6A—C7A	-0.5 (4)	O1B—C12B—C9B—C1B	-179.4 (2)
C5A—C6A—C7A—C8A	0.1 (4)	C13B—C12B—C9B—C1B	-0.8 (5)
C6A—C7A—C8A—N1A	179.5 (2)	C2B—C1B—C9B—C12B	171.7 (3)
C6A—C7A—C8A—C3A	0.2 (4)	N1B—C1B—C9B—C12B	-8.7 (4)
C4A—C3A—C8A—N1A	-179.6 (2)	C2B-C1B-C9B-C10B	-6.3 (4)
C2A—C3A—C8A—N1A	-1.0 (2)	N1B-C1B-C9B-C10B	173.3 (2)
C4A—C3A—C8A—C7A	-0.2 (3)	C12B-C9B-C10B-C11B	1.2 (3)
C2A—C3A—C8A—C7A	178.4 (2)	C1B—C9B—C10B—C11B	179.6 (2)
C2A-C1A-C9A-C12A	-176.8 (3)	C9B-C10B-C11B-O1B	-0.8 (3)
N1A—C1A—C9A—C12A	5.8 (4)	C11A—O1A—C12A—C9A	1.0 (3)
C2A-C1A-C9A-C10A	5.1 (4)	C11A—O1A—C12A—C13A	-179.1 (2)
N1A-C1A-C9A-C10A	-172.4 (2)	C1A—C9A—C12A—O1A	-179.2 (2)
C12A—C9A—C10A—C11A	0.3 (3)	C10A—C9A—C12A—O1A	-0.8 (3)
C1A—C9A—C10A—C11A	178.9 (2)	C1A—C9A—C12A—C13A	0.9 (5)
C9A-C10A-C11A-O1A	0.3 (3)	C10A—C9A—C12A—C13A	179.3 (3)
C7A—C8A—N1A—C1A	-178.2 (2)	O2A—C13A—C12A—O1A	179.0 (2)
C3A—C8A—N1A—C1A	1.1 (2)	C14A—C13A—C12A—O1A	-0.5 (3)
C2A—C1A—N1A—C8A	-0.8 (3)	O2A—C13A—C12A—C9A	-1.1 (4)
C9A—C1A—N1A—C8A	177.1 (2)	C14A—C13A—C12A—C9A	179.4 (3)
C10A—C11A—O1A—C12A	-0.8 (3)	O1B—C12B—C13B—O2B	-176.5 (2)
N1B—C1B—C2B—C3B	-0.1 (3)	C9B—C12B—C13B—O2B	5.0 (4)
C9B—C1B—C2B—C3B	179.5 (2)	O1B—C12B—C13B—C14B	4.6 (3)
C1B—C2B—C3B—C4B	179.2 (3)	C9B—C12B—C13B—C14B	-174.0 (3)
C1B—C2B—C3B—C8B	0.2 (2)	C7B—C8B—N1B—C1B	-180.0 (2)
C8B—C3B—C4B—C5B	-0.4 (3)	C3B—C8B—N1B—C1B	0.2 (2)
C2B—C3B—C4B—C5B	-179.2 (3)	C2B—C1B—N1B—C8B	-0.1 (3)
C3B—C4B—C5B—C6B	0.1 (4)	C9B—C1B—N1B—C8B	-179.69 (19)

C4B—C5B—C6B—C7B C5B—C6B—C7B—C8B C6B—C7B—C8B—N1B	-0.2 (4) 0.6 (4) 179.4 (2)		C10B—C11B—O1B—C12B C9B—C12B—O1B—C11B C13B—C12B—O1B—C11B			0.1 (3) 0.6 (3) -178.3 (2)			
Hydrogen-bond geometry (Å, °)									
D—H···A		<i>D</i> —Н	H····	A	$D \cdots A$	D—I	H···A		
N1A—H1A···O2A		0.93 (3)	1.91	(3)	2.739 (3)	148 ((2)		
N1B—H1B····O2B		0.97 (3)	1.90)(3)	2.730 (3)	143 ((3)		
C4A—H4A····Cg ⁱ		0.95	2.94	ł	3.695 (2)	137			
С7А—Н7А…О2В		0.95	2.55	5	3.472 (3)	163			
С7В—Н7В…О2А		0.95	2.62	2	3.546 (3)	163			
C11A—H11A····O2A ⁱⁱ		0.95	2.53	3	3.231 (3)	131 ((1)		
C11B—H11B····O2B ⁱⁱⁱ		0.95	2.55	5	3.234 (3)	129 ((1)		
Symmetry codes: (i) $-x+1$, $y-1/2$, $-z+1$; (ii) $x-1$, y , z ; (iii) $x+1$, y , z .									

Fig. 1

